Useful Links

Key references

This list contains some important references in the field of Control of Distributed Parameter Systems. It is not exhaustive and will be improved over the course of time (feel free to send additional references to the TC Chair).

  1. T.Banks, Control and Estimation in Distributed Parameter Systems. Frontiers in Applied Mathematics. SIAM, 1992.
  2. R.Curtain and H.J.Zwart. An introduction to infinite-dimensional linear systems theory. Texts in applied mathematics. New York, USA: Springer-Verlag, 1995, p. 698.
  3. Z-H.Luo, B-Z.Guo and O.Morgul. Stability and Stabilization of Infinite Dimensional Systems with Applications. Ed. by Springer. Communications and Control Engineering. 1999.
  4. I.Lasiecka and R.Triggiani. Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems: Continuous and Approximation Theories, Cambridge University Press, 2000.
  5. I.Lasiecka and R.Triggiani. Control Theory for Partial Differential Equations: Volume 2, Abstract Hyperbolic-like Systems Over a Finite Time Horizon: Continuous and Approximation Theories (Vol.2). Cambridge University Press, 2000.
  6. D.Christofides. Nonlinear and Robust Control of PDE Systems : Methods and Applications to Transport-Reaction Processes. Systems and Control: Foundations and Applications Control: Foundations and Applications. Birkhäuser Birkhäuser Mathematics, 2001.
  7. D. Gunzburger. Perspectives in Flow Control and Optimization (Advances in Design and Control). Advances in Design and Control (Book 5). Society for Industrial and Applied Mathematics, 2002.
  8. G.Leugering, O. Imanuvilov, B.-Y. Zhang, and R. Triggiani. Control Theory of Partial Differential Equations. Ed. by Taylor and Francis. Lecture Notes in Pure and Applied Mathematics. CRC Press,2005.
  9. O.Staffans. Well-posed linear systems. Cambridge University Press, 2005.
  10. R.Dáger and E. Zuazua. Wave propagation, observation and control in 1-d flexible multi-structures. Vol. 50. Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 2006.
  11. M.Krstic and A. Smyshlyaev. Boundary Control of PDEs: A Course on Backstepping Designs. Ed. by SIAM. 2008. (additional material)
  12. M.Tucsnak and G. Weiss. Observation and Control for Operator Semigroups. Birkhauser, 2009.
  13. A.Smyshlyaev and M. Krstic. Adaptive Control of Parabolic PDEs. Ed. by P. U. Press. 2010.
  14. A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter. Representation and Control of Infinite Dimensional Systems, Systems and Control: Foundations and Applications. Birkhäuser Boston, 2011.
  15. B. Jacob and H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Ed. by B. Springer Basel AG. Vol. Operator Theory: Advances and Applications, 223. Linear Operators and Linear Systems. Birkhäuser, 2012.
  16. T. Meurer. Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs. Series: Communications and Control Engineering, Springer-Verlag, 2012.
  17. K. Ammari and S. Nicaise. Stabilization of elastic systems by collocated feedback. Vol. 2124. Lecture Notes in Mathematics. Springer, Cham, 2015.
  18. E. Aulisa and D. Gilliam. A Practical Guide to Geometric Regulation for Distributed Parameter Systems, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, 2015
  19. R. Curtain and H. J. Zwart. introduction to infinite-dimensional linear systems theory: A State-Space Approach. Texts in applied mathematics. New York, USA: Springer-Verlag, 2020, p. 752.
  20. K. Morris. Controller Design for Distributed Parameter Systems. ISBN: 9783030349493. Springer International Publishing. 2020

Internet courses (Videos)

zwart.jpg An introduction to Distributed Parameter Systems, Hans Zwart
paunonen.jpg Modeling with PDEs, Lassi Paunonen
Ezuazua.jpeg

Boundary control of the wave equation, Enrique Zuazua


Internet courses (Slides)

Ezuazua.jpeg Partial Differential Equations, Control and Numerics, Enrique Zuazua

YLG.jpg

zwart.jpg

arjan.jpg

Modeling and Control of Nonlinear and Distributed Parameter Systems : The port Hamiltonian approach, Yann Le Gorrec, Hans Zwart, Arjan van der Schaft

Virtual seminars

Commercial softwares

Journals