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Desalination and Dehydration of Crude Ol

» Why desalination and dehydration ?

Crude oil extracted from underground contains water and salts, which will:

(1) corrode crude oil processing equipment;
(2) poison the catalyst;
(3) affect the quality of petroleum products, etc.




Desalination and Dehydration of Crude Ol

» How desalination and dehydration ?
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Desalination and Dehydration of Crude Ol

P Traditional way to monitor the process
?? Desalted
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Multi-function analyzer on desalted oil

It could not detect the fault in time 4




Traditional Analyzer vs NIR

» Traditional analyzer:

To analyze macro-process variable (MPV), to taste sample, smell sample, weighting or
scaling sample, etc...

» NIR-“eyes of a superman”:
To look into molecular structures through their vibrations, to calculate the properties by using
Chemometrics.

P What can be seen and reported by this “superman”?
Almost “any”” properties! Because the molecular structures and vibrations are the fundamentals
of matter “property””.

Traditional Analyzer: \ NIR:

Good accuracy Good repeatability
Poor repeatability ° Accuracy-depends on model ?




Monitoring, Quality control, and Reverse product design for

mining, mineral and metal processing

Example of NIR spectra for quality control
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NIR-Based Fault Detection

P Fault detection for crude oil desalting process in Petro-Canada:

Method 1. Fault detection via PCA and statistics
Method 2. Fault detection via process pattern and potential function




- Fault Detection via PCA and Statistics

» Basic procedures

Desalting Near Infrared Spectral Control limits of statistical
process ) Spectrometer ) pretreatment — PCA = indicators: To%and Qo

Comparing Fault
:> detection

:D Extracting principal = Calculating statlstlcal

components indicators: T2and Q
P Calculation of statistics
°®
12 KO=D e ok @)
n—k
2
TR cﬂ,/sezho . Gzho(f;o Dy
1

2
2

1-26,6
0= A 1=123),hy =— 7=




Fault Detection via PCA and Statistics

Q statistic of NIR- based FD
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Changes in the molecular level can be identified earlier than the
physical appearances on the process




Fault Detection via PCA and Statistics
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Molecular vibration-based NIR can more quickly sense system’s anomalies and be
more sensitive to early failures compared to traditional process variable.
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| \) Fault Detection via PCA and Statistics

» Accuracy: MPV vsNIR
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Fault Detection via PCA and Statistics

Vast spectral variables
and most of them are
unrelated to the process.

P Solutions :

» NIR-based fault detection is better than MPV-based FD !
» However, there are still two major problems :

PCA and statistics require
linear separability among
different operating status.

Elastic net-PCA: variable
selection and extracting
comprehensive features .

Potential function: a kind
of nonlinear classification
with visual performance

Improve the information
efficiency of spectral data

Improve the interpretability
and prediction accuracy
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Fault Detection via Process Pattern and Potential
Function

» Basic procedures
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NIR-Based Fault Detection via Process Pattern and
Potential Function

Extracting comprehensive features-PCA:
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Fault Detection via Process Pattern and Potential
Function

P Potential function discrimination

Train a cumulative potential function :
Hk+1(x) - Hk(X) + rk+1H (X' Xm+1)

0, X, eo HH (X, ,)>0
P b Xm €0, HH((X,,1) <0
g X €0 HH (X, ;) <0
-1 Xy €@ HH (X)) 20

The mechanism of fault detection:

Normal state , H(X) >0

The current system is in:
Faultstate ,H(X)<O
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Fault Detection via Process Pattern and Potential
Function

» Image of the cumulative potential function
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Fault Detection via Process Pattern and Potential
Function

P Accuracy: PCA-statistic vs process pattern and potential function
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B PCA-statistic ™ process pattern and potential function
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Thank You !
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