

## Fault detection based on NIR for crude oil desalting process

## Xiaoli Luan Jiangnan University









IFAC MMM 2018 2018.08.25





## **Desalination and Dehydration of Crude Oil**

## Why desalination and dehydration ?

Crude oil extracted from underground contains water and salts, which will:

- (1) corrode crude oil processing equipment;
- (2) poison the catalyst;
- (3) affect the quality of petroleum products, etc.











## **Desalination and Dehydration of Crude Oil**

#### Traditional way to monitor the process



#### It could not detect the fault in time



## **Traditional Analyzer vs NIR**

#### Traditional analyzer:

To analyze macro-process variable (MPV), to taste sample, smell sample, weighting or scaling sample, etc...

#### ▶ NIR-"eyes of a superman":

To look into molecular structures through their vibrations, to calculate the properties by using Chemometrics.

#### ► What can be seen and reported by this "superman"?

Almost "any" properties! Because the molecular structures and vibrations are the fundamentals of matter "property".

#### Traditional Analyzer:

Good accuracy Poor repeatability



#### NIR:

Good repeatability Accuracy-depends on model?



#### What Areas Can Use NIR?



Monitoring, Quality control, and Reverse product design for mining, mineral and metal processing





#### **NIR-Based Fault Detection**

Fault detection for crude oil desalting process in Petro-Canada:

Method 1. Fault detection via PCA and statistics Method 2. Fault detection via process pattern and potential function











## **Fault Detection via PCA and Statistics**

#### Accuracy: MPV vsNIR



11



## **Fault Detection via PCA and Statistics**

# NIR-based fault detection is better than MPV-based FD ! However, there are still two major problems :

Vast spectral variables and most of them are unrelated to the process. PCA and statistics require linear separability among different operating status.

#### Solutions :

Elastic net-PCA: variable selection and extracting comprehensive features .

Improve the information efficiency of spectral data Potential function: a kind of nonlinear classification with visual performance

Improve the interpretability and prediction accuracy





## NIR-Based Fault Detection via Process Pattern and Potential Function

Extracting comprehensive features-PCA:





## Fault Detection via Process Pattern and Potential Function

#### Potential function discrimination

Train a cumulative potential function :

$$H_{k+1}(X) = H_k(X) + r_{k+1}H(X, X_{m+1})$$

$$r_{k+1} = \begin{cases} 0, & X_{m+1} \in \omega_1 \coprod H_k(X_{m+1}) > 0 \\ 0, & X_{m+1} \in \omega_2 \coprod H_k(X_{m+1}) < 0 \\ 1, & X_{m+1} \in \omega_1 \coprod H_k(X_{m+1}) \le 0 \\ -1, & X_{m+1} \in \omega_2 \coprod H_k(X_{m+1}) \ge 0 \end{cases}$$

The mechanism of fault detection:

The current system is in : 
$$\begin{cases} \text{Normal state}, H(X) > 0 \\ \text{Fault state}, H(X) < 0 \end{cases}$$



## Fault Detection via Process Pattern and Potential Function

#### ► Image of the cumulative potential function





### Fault Detection via Process Pattern and Potential Function

#### Accuracy: PCA-statistic vs process pattern and potential function



