

The 5th IFAC Workshop on Mining, Mineral and Metal Processing

Complex chemical process optimization and its industrial applications

Wenli Du

Key Lab of Advanced Control and Optimization for Chemical Processes, Ministry of Education (<u>http://acocp.ecust.edu.cn</u>)

East China University of Science and Technology, Shanghai

Aug. 23-25 2018 Shanghai

3

14

tegrated planning and blend recipes optimization																	
e necess	ity for i	ntegr	atior	1						_							
	Blend recipe calculated by scheduling level									bl	blend recipes by Real-time opt				imization		
Period	1	2	3	4	5	6	7			1	2	3	4	5	6	7	-
SZORBD	0.152	0.443	0.444	0.445	0.48	0.444	0.14	- C	SZORBD	0.449	0.446	0.45	0.448	0.45	0.449	0.416	
OCTMD	9.76E-04	0.364	0.184	0.349	0.375	0.139	0.694		OCTMD	0.276	0.275	0.277	0.276	0.277	0.277	0.358	
REFOR	0.349	0.152	0.195	0.157	0.006	0.213	4.34E-04		REFOR	0.126	0.169	0.124	0.127	0.167	0.167	0.109	
NOARO	0.444	0.017	0.175	0.025	0.009	0.2	0.035		NOARO	0.108	0.068	0.108	0.108	0.065	0.066	0.017	
SZORBG	0.053	0.023	0.002	0.024	0.13	0.004	0.13		SZORBG	0.041	0.041	0.041	0.041	0.041	0:041	0.1	
Period.	8	9	10	11	12	13	14	15	2	8	.9	10	11	12	13	14	15
SZORBD	0.444	0.441	0.444	0.223	0.444	0.403	0.44	0.44	SZORBD	0.443	0.456	0.448	0.401	0.45	0.449	0.448	0.44
OCTMD	0.152	0,363	0.049	0.606	0.147	0.459	0.175	0.173	OCTMD	0.289	0.301	0.276	0.378	0.277	0.277	0.276	0.2
REFOR	0.208	0.068	0.258	0.04	0.212	0.001	0.199	0.201	REFOR	0.13	0.119	0.169	0.107	0.124	0.125	0.128	0.13
NOARO	0.192	0.004	0.248	0.001	0.195	0.008	0.183	0.184	NOARO	0.038	0.024	0.065	0.015	0.108	0.108	0.107	0.1
SZORBG	0.003	0.123	0.002	0.13	0.002	0.128	0.003	0.003	SZORBG	0.099	0.1	0.041	0.099	0.041	0.041	0.041	0.0
esponse	to temporary delivery						Op	otimized re	emporary delivery				-	8			
12000	8 0		17	Υ.					Recipe		-	Volu	nes (M3)	<u> </u>	-	8	
8000			1	1	SZORBD OCTMD				0.324	•		3404.386					
6000				-					0.381			34	4000		-		
2000			REF	OR		0.145		1518.545					1				
				1.1	NOARO			0.085		889.946				-13	14	15	
0	1 2 3	8	0 838	7 5560		NOP	IRO		0.00.5			00	9.940		3.1 14743.8	14830.2 14	\$890.4

23

