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Introduction

 Modeling methods of industrial systems

 Mechanism modeling method

Physical and chemical reaction analysis of industrial systems

Advantage: Clear physical meaning

Shortcoming: Unmodeled dynamics in the model

 Data-based modeling method

Regression analysis between input and output variables

Advantage: Strong applicability and generality

Shortcoming: Relying too much on the quantity and quality of samples

which are difficult to obtain in industrial systems



Introduction

 Hybrid modeling method

• A hybrid model combines a mechanism model with a data-based

model.

• A set of methods for parameter identification and updating

strategy for the hybrid model is developed.

x: States

y: Outputs

u1,u2: Controls

ξ: Unmodeled dynamics

Hybrid modeling

Fig.1 Framework of a hybrid model



Introduction

 A mechanism model of the iron precipitation process based on the reaction

kinetics and mass balance

(F.Q. Xiong, W.H. Gui, C.H. Yang, et al, Journal of Central South University

(Science and Technology), vol. 43, pp. 541-547, 2012.)

 An integrated model of the iron precipitation process by combining a mechanism

model with an error compensation strategy

(Y.F. Xie, S.W. Xie, X.F. Chen, et al, Hydrometallurgy, vol. 151, pp. 62-72, 2015.)

These works have not considered the unmodeled dynamics in the

mechanism model. It is necessary to deal with the unmodeled

dynamics by data-based modeling!

A hybrid modeling method is proposed for the iron precipitation

process by goethite in this paper.

 Modeling methods for iron precipitation by goethite
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Problem Formulation

1#

reactor

Zinc oxide

Oxygen 

Press filter

Thickener

Underflow solution

Solution for iron 

precipitation 

2#

reactor 3#

reactor 4#

reactor 5#

reactor

 The iron precipitation by goethite

The aim of the process is to remove ferrous and iron ions from

the zinc sulfate solution to ensure quality of zinc ingot product.

Outlet ferrous ion 

concentration

Fig.2 The process of iron precipitation by goethite



 Reactions in iron precipitation process by goethite

Neutralization reaction

Oxidation reaction Hydrolysis reaction
H2SO4

H2SO4 H2SO4

 The ferrous ions are oxidized to iron ions by oxygen and iron ions are

hydrolyzed to form the goethite precipitate in a zinc sulfate solution. In order

to maintain the pH value, zinc oxide is added to neutralize the hydrogen ions.

 The reaction conditions have to be strictly controlled. If ferrous ions are

oxidized and precipitated too quickly or too slowly, both the iron removal rate

and the goethite precipitate quality will be poor.

Problem Formulation

Fig.3 Three coupled reactions in iron precipitation



 CSTR system for a single reactor

Volume V

Fe
2+

Fe3+

H
+

ZnO

O2

Zinc solution

Flow F

Fe2+

Fe
3+

H+

CH+,in

CFe2+,in

CFe3+,in

CH+

CFe2+

CFe3+

CO2
Flow F

Zinc oxide

Oxygen

V : Volume of the reactor

F: Flow rate of the zinc solution

𝑐𝐹𝑒2+,𝑖𝑛,𝑐𝐹𝑒3+,𝑖𝑛, 𝑐𝐻+,𝑖𝑛:Inlet ion

concentration in the solution of

Fe2+, Fe3+, H+ , respectively

𝑐𝐹𝑒2+, 𝑐𝐹𝑒3+ ,𝑐𝐻+ : Outlet ion

concentration in the solution of

Fe2+, Fe3+, H+ , respectively

𝑐𝑂2
: Concentration of dissolved

oxygen in the solution

Problem Formulation

The oxidation rate of the ferrous ions is an important factor, 

which is affected by concentration of dissolved oxygen(𝑐𝑂2
).

Fig.4 The reaction unit of the #1 reactor



 Mechanism model of iron precipitation process
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The mechanism model is established based on the mass balance and reaction

dynamics of oxidation, hydrolysis and neutralization.

Problem Formulation

𝜌: Particle density of zinc

oxide

𝑅𝑠 : Particle radius of zinc

oxide

𝜌𝑂2
: Density of oxygen

𝑀𝑂2
: Molar mass of oxygen

𝑢𝑂2
: Flow rate of oxygen

𝑚𝑍𝑛𝑂: Mass of zinc oxide

𝑘𝑙𝑎: Mass transfer

coefficient of oxygen

k1,k2,k3,𝛼,𝛽,𝛾:Parameters to

be identified

𝑘𝑙𝑎 is the output of a unmodeled dynamics.

Data-based methods are used to build the model.
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 Hybrid modeling method for iron precipitation process

x: States

y: Outputs

 y: Predictive outputs

u: Controls of mechanism

model

v: Controls of data-based

model

f1, f2, g :Functions

C: Output matrix

ξ: Unmodeled dynamics

θ1,θ2,θ3 : Parameters

hybrid model

Main Results

Plant

Predictive output

Parameter 

identification

OutputInputs

Hybrid model 

Error
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Mechanism model

Data-based model

y

ŷ
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Fig.5 Hybrid model of the iron precipitation process



 Hybrid model of iron precipitation process

Main Results

 The hybrid model of iron precipitation process includes:

 a mechanism model

 and a data-based model of unmodeled dynamics 𝑘𝑙𝑎

1 1 2( , , ) ( , , )

,
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[ , , ] f1 and g: Can be obtained by some

mathematical manipulation

of the original mechanism model.

f2 : Need to be established based

on data.



 Determine the model inputs of the mass transfer coefficient (kla)

 kla is affected by following factors :

(1) the concentration of metal ions(Fe2+,Fe3+, Cu2+, Zn2+ and so on) in the solution

(2) the solids in the solution (goethite−FeOOH and ZnO)

(3) solution flow rate and other factors

2 3 2 22 , , ,la FeOOH ZnOFe Fe Cu Zn
k f c c c c F n m    ( , , , )

𝑐𝐶𝑢2+: Concentration of Cu2+

𝑐𝑍𝑛2+: Concentration of Zn2+

F: Flow rate of the zinc solution

𝑛𝐹𝑒𝑂𝑂𝐻: Molar number of the goethite

𝑚𝑍𝑛𝑂: Mass of zinc oxide

Main Results



 Data-based modeling method for kla

 kla has strong nonlinearities with input variables. Different input variables have

different correlations to kla .

 Kernel principal component analysis (KPCA) and least squares support vector

machine (LSSVM) are effective in dealing with strong process nonlinearities.

 Locally weighted techniques can deal with correlations among different variables.

 By incorporating the merits of KPCA, LSSVM and locally weighted techniques,

a double locally weighted kernel principal component analysis-least squares support

vector regression(DLWKPCA-LSSVR) is proposed to build the model of 𝑘𝑙𝑎.

Main Results



 Step 1：Determine input and output

2 3 2 2, , , FeOOH ZnO LaFe Fe Cu Zn
c c c c F n m K   
   x y, , , ，

Assume that the input variables of H historical samples used for modeling are

xℎ ℎ=1
𝐻 , and the corresponding output samples are yℎ ℎ=1

𝐻
.

The distance between each historical sample 𝒙ℎ and the query sample 𝒙𝑞 (the real

time sampling point) is calculated to obtain the weight of the historical sample.

( ) ( ), 1,2, ,T

h h q h qD h H    x x x x

2 2exp( / ), 1,2, ,h hw D h H   

 Step 2：Calculate  weights of historical samples 

Main Results

𝐷ℎ :  Distance between every historical 

sample and  query sample 

𝑤ℎ : Weight of the historical sample

𝜎 :    Distance parameter 

 Modeling method of DLWKPCA-LSSVR



 Step 3：Calculate weights of input variables
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Main Results



 Step 4 ：Extract nonlinearity by KPCA

g𝑞
𝑃𝑤,𝐾: Nonlinearity

𝛂𝑑
𝑃𝑊,𝐾: First d columns of the eigenvector of 𝑲𝑞

𝑃𝑤

𝑲𝑃 : Weighted kernel matrix

𝛿1: A parameter

The output-related nonlinearity is:
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Main Results



 Step 5：Construct the LSSVR model between the output variable

and the nonlinearity

,
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Main Results

𝐆𝑖
𝑃𝑤,𝐾

:  Nonlinearity of  training data

𝐠 :          Nonlinearity of query sample 

𝑲:    Kernel matrix

𝛿2: Width parameter in kernel function

N: Number of modeling samples

𝑏𝑁 :       Deviation that can be obtained by solving matrix equation

𝜃𝑖 :        Lagrangian multiplier

By double locally weighting of samples and variables, we can extract

the nonlinearity more related to the output.



Main Results

 Hybrid model of the process
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 1 2 3 1 2, , , , , , , ,k k k       

A global optimization algorithm – State Transition Algorithm is 

used to optimize the hybrid model parameters.

∶ Hybrid model predictive output

𝑦′ :  Samples of the real output

𝜃′ :  Parameter vector 

Main Results

 Parameters identification

 y’
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Ntrain:  Number of training samples



The ALD condition is used to determine whether to update the model when a new 

sample is available.  The model updating condition is as follows.

xq : New query sample

xi : Training sample 

ai :  Coefficient

𝛿𝑞 : ALD index

u :   Given threshold 

2

1

min

do not update the model

update the model

， 

， 
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 Online updating strategy based on approximately linear dependence(ALD)  

Main Results

The parameters 𝑏𝑁 and 𝜃𝑖 in data-based model are updated when the 

ALD index reaches the given threshold. 
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 Taking 1# reactor of iron precipitation process as an example.

Model accuracy of three kinds of models are tested for comparison.

Model 1: The mechanism model in which kla is acquired by parameter

identification

Model 2: A hybrid model in which kla is acquired by locally weighted kernel

principal component regression(LWKPCR)

Model 3: The proposed hybrid model

Performance indices:
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An Example

RMSE: Root mean squared error

MAE: Mean absolute error

MRE: Mean relative error



 Parameter identification result for the hybrid model

Table 1  Parameter identification result

An Example

Parameter k1 k2 k3 α β

Value 1.5963 0.0013 20.0868 1.3592 1.2807

Parameter γ δ1 δ2 σ c

Value 0.3764 4.4953 3.8011 1.9341 0.6491

 Parameter setting

𝜌𝑅𝑠: 0.012g/cm3

𝜌𝑂2
: 1.429g/L

𝑀𝑂2
: 32g/mol

V: 300m3

N: 10

The principal components : 3



Model accuracy comparison of the three models

Fig.6 The output of Model 1, Model 2,  Model 3 and real system 

An Example



 Model accuracy comparison results

Table 2 Comparison results on model accuracy of the three models 

The results in Table 2 show that the proposed hybrid model (Model 3)

can better represent the dynamical characteristics of the iron

precipitation process than the others.

An Example

Method RMSE(g/L) MAE(g/L) MRE

Model 1 0.4747 0.3829 0.0458

Model 2 0.3816 0.3259 0.0406

Model 3 0.2315 0.1745 0.0219



 The results of online updating strategy based on ALD

Fig.7 Trend plot of computation time and RMSE with ALD threshold

An Example

The ALD threshold can be set to 0.185, which not only ensures the

model accuracy, but also reduces the computation time.
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Conclusion

 A hybrid model method by combining both a mechanism model and a

data-based model of the mass transfer coefficient of oxygen is

proposed for iron precipitation process.

The mechanism model is established based on the mass balance and

reaction dynamics.

The unmodeled dynamics of the mass transfer coefficient of oxygen

in mechanism model is built by DLWKPCA-LSSVR.

 Parameters in the hybrid model are identified simultaneously by using

an optimization algorithm.

 An online updating strategy is proposed to reduce the computation

time by setting a reasonable ALD threshold.

Conclusion and Future Work



Future Work

 Hybrid modeling method for industrial systems with the incomplete data.

 Adaptive parameter updating method for a hybrid model with various

production conditions.

Conclusion and Future Work




