

forward together · saam vorentoe · masiye phambili

Machine Learning Applications in Minerals Engineering

Lidia Auret, John McCoy

Department of Process Engineering, Stellenbosch University, South Africa

Mineral processing challenges

Continuous, connected, controlled, circulating, complex, changing

Mineral processing data

- Online data
 - Physical property sensors (~seconds)
 - E.g. mass flow rate, density, temperature, pressure
 - Image data (~minutes)
 - E.g. rocks on conveyor belts, flotation froth
- Offline data
 - Laboratory data (~hours)
 - E.g. metal content, particle size distribution
 - Image data (~days)
 - E.g. microscopic grain shape and colour
 - Text data (~days)
 - E.g. maintenance logs, metallurgist reports

$$\boldsymbol{Y} = f(\boldsymbol{X}, \boldsymbol{\theta})$$

 $Y \sim continuous; Y \sim categorical$ Y = output variablesX = input variables $X \sim continuous X \sim categorical$ $\boldsymbol{\theta} = parameters$ $\theta_m = model \ parameters;$ $\theta_h = hyperparameters$ f() = functional formParametric, e.g. linear regression *Non – parametric, e. g. neural nets* Learn θ_m (e.g. minimize $\sum_i (Y_i - \hat{Y}_i)^2$) Training: Validation: Learn θ_h

$\boldsymbol{Y} = f(\boldsymbol{X}, \boldsymbol{\theta})$

Supervised learning

Unsupervised learning

Regression *Y~continuous*

Noise removal, feature extraction $\widehat{X} = f(X, \theta)$ $T = f(X, \theta)$

Classification *Y*~*categorical*

Clustering $C = f(X, \theta)$

Machine learning definitions

Нуре

BIG DATA! INDUSTRY 4.0! ARTIFICIAL INTELLIGENCE! (?)

 $Y = f(X, \theta)$ More data + Better computers + Better methods

- Increasing popularity in many applied sciences
 - Special issues in journals of medicine, finance, environmental science, etc.
- Review undertaken: 13 journals and conference proceedings (2004 2018):
 - AIChE; Chemometrics and Intelligent Laboratory Systems; Computers and Chemical Engineering; Control Engineering Practice; Engineering Applications of Artificial Intelligence; Journal of Process Control; IFAC MMM; Industrial and Chemical Engineering Research; International Journal of Mineral Processing; International Journal of Mining, Reclamation and Environment; JSAIMM; Minerals and Metallurgical Processing; Minerals Engineering
- Tool for researchers: Searchable summaries
 - Category and application
 - Method, inputs, outputs, hyperparameters
 - Success and implementation

Нуре

177 technique applications

Implementation	Count
Experimental data	105
Simulated data	8
Industrial data	40
Industrial implementation	24

Success	Count
Yes	141
Limited	35
No	1

Category	Count
Fault detection and/or diagnosis	30
Data-based modelling	40
Machine vision	107

Data-based modelling

Fault detection and diagnosis

Machine vision

Golden rules

- Hyperparameter sensitivity and guidelines
 - Show sensitivity to hyperparameter selection
 - Guidelines relating hyperparameters to industrial context
- Data diversity and explicit model validity
 - Training data should include entire expectation of process data variation
 - Model predictions should include metric to indicate level of certainty / extrapolation
- Comparison to simple and/or fundamental models
 - Numerical motivation should be given for complex models
 - Compare to simpler techniques
 - Incorporate fundamental knowledge

Future directions

- Build the business case
 - Data-based modelling / machine vision: Similar to economic motivation for control
 - Fault detection and diagnosis: More complicated

Future directions

- De-risk the method
 - Thorough robustness analysis
 - Availability of benchmark industrial datasets
 - "UCI ML repository" archive.ics.uci.edu/ml for mineral processing
 - Control loop data repository: sacac.org.za/Resources
 - Availability of benchmark <u>simulation</u> datasets
 - "Tennessee Eastman process" for mineral processing
 - Simulation repository: github.com/ProcessMonitoringStellenboschUniversity

Future directions

- Train the humans
 - Engineers of today and tomorrow need to be data science literate
 - Not necessary to be an expert in machine learning
 - Basic understanding of goals and types
 - Ability to communicate requirements for new solutions
 - Ability to critically assess the results (check golden rules)
 - At undergraduate, postgraduate and professional levels
 - Challenge: Lack of domain-specific resources (e.g. examples, textbooks)
 - Good place to start: www.statlearning.com

Domain knowledge + Machine learning = Better solutions

Questions?

MMM 2019 Stellenbosch South Africa Welcome, Welkom, Bienvenu, 歡迎, Wilkommen.

to:

Contact us

18th IFAC Symposium on Control, Optimization and Automation in Mining, Mineral and Metal Processing

28-30 August 2019, Stellenbosch, South Africa

www.ifacmmm2019.org