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Process Data Analytics 
State of the art and applications in oil sands industry
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Data Analytics
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Data Analytics 
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Data Era
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Data Science

https://www.quora.com/What-is-the-difference-between-Data-Analytics-Data-Analysis-Data-Mining-Data-Science-Machine-Learning-and-Big-Data-1
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History of Data Analytics

Analytics 
1.0

• Traditional Analytics  
(mid-1950s - 2000)

Analytics 
2.0

• Big Data                 
(early 2000s - today)

Analytics 
3.0 • Data Economy 

(future)
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Data Analytics vs Data Analysis

http://www.blueoceanmi.com/big-data-analytics-overview
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Increasing Trend of Data Analytics

http://www.forbes.com/sites/louiscolumbus/2015/03/15/data-analytics-dominates-enterprises-spending-plans-for-2015/#5df926dc3eb4
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Application of Data Analytics: Engineering

where we are

Conclusion:

 Growth of natural 
resources industry 
stagnated;

 Big data in natural 
resources industry 
has great potential.
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Typical Algorithms in Data Analytics

• Supervised learning
 Regression: LASSO, Decision tree, PLS, MLR
 Classification: Logistic regression
 Hybrid: Gaussian Process, Neural Network, SVM/SVR
 …

• Unsupervised learning
 Dimension Reduction: PCA
 Clustering: k-means
 …

• Inference
 Maximum Likelihood, Expectation Maximization
 Bayesian Method, Variational Bayesian, Bayesian Network
 …
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Data Analytics Software Platform and 
Toolboxes

http://www.kdnuggets.com/polls/2015/analytics-data-mining-data-science-software-used.html
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Process Data Analytics(Engineering)
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*

High Dimensionality
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PCA/PLS/ICA and Applications:

•Dimensionality Reduction 

•Pre-processing for many data mining tasks (Noise Reduction)

•Analyze data and to find patterns

High Dimensionality of Data - “Decoding” 
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Robustness – Dealing with Irregular Data

• Modeling the noise: Gaussian distribution vs others
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Multimodality  

Operation  
mode B

Operation Operation 
mode C

Operation Operation 
mode A

Model A Model B

Model C

Process Pattern
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Nonlinearity – Local Solution

Input

O
ut

pu
t 

Contributed by Sanghong Kim from Kyoto University

JIT modeling                  
= Locally weighted modeling 
= Relevance-In-Space modeling                
= Lazy modeling
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݌ ࢟ ,ࢄ ݈, ଶߪ ൌ 	න݌ ࢟ ,ࢌ ,ࢄ ଶߪ ݌ ࢌ ,ࢄ ݈ ࢌ݀

Analytical expression of likelihood exists

Nonlinearity – Gaussian Process
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Multirate sampling with time Varying time-delays:

• Dual rate: fast rate input while slow rate output
• Time delay is varying at every sample

Time varying time delays
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Errors-In-Variables (EIV)

– Noise-corrupted measurements: ݑ௞ ௞ݕ,
– Additive noise: ݑ෤௞, ෤௞ݕ
– Unknown noise-free input and output: ො௞ݑ ො௞ݕ,
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Process Knowledge - Bayes Methods
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( )
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Posterior (estimation of unknown)

Likelihood (model fit)

Prior (knowledge)

Observations

Queries
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Oil Sands
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Canada’s Oil Sands

• 141,000 square kilometres deposit
• 1.7 trillion barrels of bitumen
• 170 billion barrels recoverable 
• second largest oil reserve 
• 1.3 million barrels crude oil per day

Source: http://en.wikipedia.org/wiki/Athabasca_oil_sands 
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From Oil Sands to Sweat Crude Oil

1. Mining

2. Crush & 
Conveyance

3. Extraction

4. Froth Treatment

5. Upgrading

Source: http://www.ems.psu.edu/~pisupati/ACSOutreach/Oil_Sands.html
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Extraction

Source: http://www.ontime.methanetomarkets.org/m2mtool/oilsands.html



27Source: http://www.bantrel.com/markets/downstream.aspx
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Process Data Analytics in Oil Sands
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Froth 
Treatment

Solvent 
Recovery

Solvent

Bitumen 
Froth

Primary Separation Vessel

Bitumen

Sand Tailings

Thickened Fine Tails

Thickener

Shovel/Truck Feeder/Crusher
Slurry 

Preparation

Hydrotransport
to Extraction

Low Energy 
Extraction

Floatation

Storage Upgrader

Feed Surge

Oil Sands
Soft Sensor

Inferential 
Control

FDI

Control 
Monitoring

Optimization
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Rapid Technology Transfer Platform

Valves Transmitters Analyzers

DCS
LCN

PCN

OPC
Servers

MATLAB

PI Database

Individual 
Application

Individual 
Application

Individual
Soft Sensor

Individual
Soft Sensor

Individual
Soft Sensor

Application

Platform
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Application Platform

Individual 
Application

Individual 
Application

Individual
Soft Sensor

Individual
Soft Sensor

Individual
Monitor

Application

Platform

 Rapid Technology 
Transfer

 Efficient 
Implementation

 Convenient 
Maintenance

• Only One Platform 
• Multiple OPC
• Multiple Individual 

Applications

Valves Transmitters Analyzers

DCS
LCN

PCN

OPC
Servers

MATLAB

PI Database
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Data Analytics in Image Processing
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Introduction of PSV

• Three layers due to 
density difference 

• Froth/Middling 
interface level is the 
most important 
control variable

Image source: http://www.oilsandsmagazine.com/oilsands-primary-extraction-gravity-separation-process-bitumen-production/
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PSV interface measurements

Image source: http://www.oilsandsmagazine.com/oilsands-primary-extraction-gravity-separation-process-bitumen-production/

Density profiler

Camera

D/P Cell
Interface 

measurements 

Best performance, however, only reliable when the 
performance index (PI) is higher than a given constant. 

Objective: Improve the camera reading reliability 
when the performance index is low.

Image Analysis
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Experimental Design

Oil 

Camera 

Water 
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Image Captured by Camera

• The image shown on the right is 
the original image observed by the 
camera. 

Pure Oil 

Mixture

Pure Water

Oil 

Water 

100%

100%

?

?

Objective: Segment the captured image as a binary 
image (+1 for oil/-1 for water/ 0 for interface)

Note: the image size for all images 
is (600 pixels × 600 pixels)
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Theory of Data Based Image Analysis

• Images can be modeled using Markov random field (MRF).

– Each pixel is considered as a random variable (RV)

– Each random variable (pixel) has a corresponding 

observation (corrupted with noise)

Aim: to recover clean pixels from noisy observations

MRF is employed to perform image segmentation 
and classification.

Random variables (clean pixels)

Noisy observations
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Principle of MRF Estimation

Potential of 
neighbors

Potential of 
observation

Energy minimization:
Total energy  
= potential of observation
+ potential of neighbors
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Image Segmentation

Image

Segmentation
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Pixel Values Profile

Oil: +1 

Water: -1 
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Mixture Boundary Determination

Pure Oil 

Pure Water

Mixture
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Mixture Boundary Indication
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Next step: Identify the interface based on the pixel value close to zero  
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Interface Estimation
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D/P Cell estimation: 35.04 cm
Image Processing estimation: 35.05 cm 0.2%
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Image under Different Condition

D/P Cell estimation: 35.71 cm
Image Processing estimation: 35.74 cm 0.5%
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Data Synthesizing - Field Applications
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It is very important to correctly control  
the Froth/middling interface height to avoid
unwanted consequences: 

 Increasing the possibility of sanding
 Reducing bitumen recovery
 Increasing water content in Froth                

increase the processing load on downstream

 Causing environmental impact due to increased 
bitumen content in tailings

Slurry Froth 

Middling

Tailings

H

Process & Motivation 
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Froth 

Middling

Tailings

0%

100%

Accurate only if:

 The interface level within
the sight glass 

 There is no accumulated materials 
on the sight glass

There is a camera that reads the interface level 
Sight glass

Process & Motivation 
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Froth 

Middling

Tailings
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Profiler

Accurate only if:

 The interface level within
the sight glass 

 There is no accumulated materials 
on the sight glass

Therefore, a profiler has been installed to 
help in measuring the interface when the 
Camera readings are not available 

There is a camera that reads the interface level 
Sight glass

Process & Motivation 
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The profiler

 Two dip pipes assembly 

 A narrow dip pipe emits 
low energy gamma

 Another dip pipe holds an 
array of gamma detectors

Process & Motivation 

 Due to difference in 
density, each phase 
attenuates the signal by 
different amounts

 These signals are 
transmitted to DSC as 
density measurements
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Objective: 

Ensure the availability of interface 
level readings that is:

 Continuous
 Accurate
 Anywhere in the PSV.  

Froth 

Middling

Tailings
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Process & Motivation 
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Froth 

Middling

Tailings
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Problem description & data visualisation  

There is no clear characteristic behavior of profiler data around the interface

Profiler readings
Temperature Density
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zoom zoom

Problem description & data visualisation  

Middling

Froth
DensityTemperatureCamera readings

Profiler readings
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zoom zoom

There is no clear characteristic behavior of profiler data around the interface.
The majority of them move with the interface                   Data-based modeling

Problem description & data visualisation  

Middling

Froth
DensityTemperatureCamera readings

Profiler readings

TemperatureDensity
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zoom zoom

Problem description & data visualisation  

Middling

Froth
DensityTemperatureCamera readings

Profiler readings

TemperatureDensity
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Data-
based
Model

Method/Regression

Profiler readings:               & We choose 
data-based 

modeling technique where:

model is built to predict interface
from profiler (D & T) readings 
by learning from the camera as an 
accurate reference,
by means of regression between:

 Profiler data  X
 Camera readings  Y

Density Temperature

Camera readings
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PLS

Method/Regression/PLS

Profiler readings:               &  
We choose: 

Partial Last Squares regression
(PLS)

 Solves the collinearity issues 
among the X variables 

 Avoids inverting covariance 
matrix ሺܺܺሻିଵ compared 
to OLS            “RPLS”  
suitable for online DCS 
Application

 Dimensionality reduction

Density Temperature

Camera readings
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Off-line model training/Fitting

]/[ 3cmg

Method/Regression/PLS

Density

Camera readings
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Off-line model training/Fitting Model validation (Prediction)

However, due to variations in process conditions,  the off-line model becomes outdated

]/[ 3cmg

Method/Regression/PLS

Density

Camera readings
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 Choose a representative training set 

 Calculate the covariance matrices “offline” 

 Update it online whenever a new sample              becomes
available
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The model will be updated with the most recent profiler & camera data and be used 
when the camera data are not available 

Method/Regression/Recursive PLS
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Density sensors Temperature sensorsIF at 60 [min]

Results

The RPLS prediction is able to track the reference when the camera readings are not available 
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Density sensors Temperature sensorsIF at 60 [min]

Results

The RPLS algorithm allows to select the input variables that have the highest “importance” 
Reduce dimensionality  

PLS helps in dimensionality reduction in X
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Results

The RPLS algorithm allows to select the input variables that have the highest “importance” 
Reduce dimensionality  

Density sensors selection 

Temperature sensors selection
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Density sensors selection 

Temperature sensors selection
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Results

Closer we are to the current (update) time, better the interface prediction performance is
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Analytics Toolboxes in Progress
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Data preprocess

Data modeling

Platform

Cumbersome

Complex

Costly

Resample, outlier detection, rearrange, normalize, detrend…. 

OLS, LASSO, RR, PCA, PLS, nonlinear regression…. 

MATLAB, Unscrambler…. 

Soft Sensor Analytics
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Data preprocess

Data modeling

Platform

OLS, LASSO, RR, PCA, PLS, nonlinear regression…. 

MATLAB, Unscrambler…. 

Resample

Normalize

Rearrange

Outlier removal

Detrend

Impute missing

OLS

PCA

RR

PLS

LASSO

Nonlinear

Resample, outlier detection, rearrange, normalize, detrend …. 

Python

Cumbersome

Complex

Costly

Data visualization

Simulation

Time Trend

Histogram

Cross‐validation

Adaptation

Excel
SQL

Matlab…

JPEG
PDF

RGBA…

.pkl

Soft Sensor Analytics
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Process Diagnosis Analytics - Toolbox

Abnormal 
Event 

Management

Character
ization

Diagnosis

Trouble
shooting

Detection
Setting a control limit
Advanced algorithms

Learning the
category and 
characteristics of 
fault

Finding the source of fault
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Process Diagnosis Analytics - Toolbox

• Causal Analytics: Extracts causality relations among the variables from data
• Oscillation Diagnostics: Detects and characterizes oscillatory type of faults
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Conclusion

• Data analytics is an emerging area of research and applications

• Great potential, demands and opportunities

• Applicable in every sector

• Opportunity for everyone
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