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A comparison: the autonomous car

A comparative example in flat metal production
(a central Europe installation for Special alloys)

The today perspective:

1) Human far from machines
(human safety & human dedicated to higher level tas  ks)

2) Realisation of ultimate quality through APC

(missing defects on material)

This is today, not yet future perspective
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Introduction

Process control® is in many respects a mature technology serving mature industries.” It has gone through
the emerging phase, the growth phase, and some would argue that it has also gone through the mature
phase and is now in decline. The shares of companies operating in industries where process control is
widely used, such as the petroleum industry, show typical signs of maturity—high dividend yields and
low price-earnings ratios that reflect limited growth prospects.

The maturity of process control technology is also borne out by the decline in research funding for this
area over the last decade or so, especially in the U.S. Paradoxically, this decline has occurred precisely
because process control research has been so successful in addressing industry concerns. Although PID
control been the king of the regulatory control loop for many decades, advanced process control has
over the last few decades moved beyond the laboratory to become a standard in several industries.
Many vendors now routinely offer advanced solutions such as model predictive control (MPC)
technology, with its ability to economically optimize multivariable, constrained processes. Although
there is always room to improve upon existing control solutions, it becomes harder to make an
argument for research funding if vendors can adequately address most of their customers’ control
problems.
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Metal industry counts a good amount of success stories in
Advanced Process Control (APC)

Samad, Annaswamy, IEEE CSS 2014

[ L e
Resistance to introduction of advanced solutions can come from: .
end user => “when | will be alone its maintenance might be an issue” | W /
commissioning staff => “I will not be able alone to get it working” /
Two point of views for the same problem...
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Complexity in process design:
- process needs a fast evolution
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- superposition of other constraints (e.g. sensors c haracteristics)
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Complexity in process design:
- process needs a fast evolution
- performance is to be evaluated in advance
- superposition of other constraints (e.g. sensors c haracteristics)
=> Process design is more and more a synergeticiss  ue mechanics/automation

7' argez‘ maz‘er/a/

/n_com/ng maz‘er/a/

The control is more complex => The process design s  tarts from:

- computing capability in automation All these aspects are “process”
- mechanical potentialities / quality targets (DIGIMET methodology)
- new available sensors
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« Automatic recognition of unsafe
situations (eg safety fences statuses)
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CONTACT US IF YOU SEE ANY OCCASION OF BUSINESS

Danieli Automation
Brazil, China, Egypt, Germany, India, Italy, Japan, Mexico,
Poland, Romania, Romania, Russia, Thailand, UAE,
UK, Ukraine, USA, Vietham
info@dca.it @

DANTELN ENG INEERING
www.dca.it

B
s
DANTEL SERVICE '&’

DAMSELl BREDA

Danieli Engineering

Danieli Automation

Danieli Centro Metallics

Danieli Corus ljmuiden

Danieli Lynxs

® Danieli Centro Met
Danieli Davy Distington

Danieli Wean United
Danieli Kohler

Danieli Frohling

Danieli FATA Hunter
Danieli Morgardshammar
_ Danieli Centro Tube
) : : m Danieli W+K
DANTEL CENTRO HASKIN, ; Danieli Centro Maskin
MMEN?DMW,DN Danieli Rotelec
Danieli Breda

& MQE w.m@m.m Q@ Danieli Centro Combustion

i ol Rl Danieli Environment
w Danieli Centro Cranes

DANIEL UIEAN UNITED Danieli Construction

Danieli Service

DANIELL CENTRO METALLICS
DAMIEL] CO RIS LUMUIDEN

L}
) [~ ] \
E DANMELF CONSTRUCTION g
DANIELI CENTRO CRANES DANIELI CENTRO RECYCLING

® & ) @® O

DAMIEY CENTRI TURE DANTEL! Ik DAMIEL! ALTOMATION DANIELH ROTELEC DANIEL CENTRO RET

o+ DAMIELI ENVIRD NRENT

Turnkey plants and systems engineering
Process control systems

Ore processing & direct reduction plants
Integrated steelmaking plants

Steel recycling plants

Steelmaking plants

Slab casters

Flat product casting, rolling and processing
Wipe equipment for coating

Specialty mills and strip finishing lines

EPC process industry

Long products rolling mill

Tube processing plants

Longitudinal and spiral welded pipe plants
Conditioning, drawing & finishing lines
EMS and induction heating systems
Extrusion and forging plants

Reheating systems

Ecological systems

Cranes for the metals Industry

TKP construction, erection, systems engineering
Technical service and spare parts



