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Brain Machine Interfaces (BMI)

A man made device that either substitutes a sensory input
to the brain, repairs functional communication between
brain regions or translates intention of movement.
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Only the joint work of engineers, neurophysiologists and
neuro scientists can realize this dream!

How did we get here?



Computational Models of Neural Intent

Neural Coding

• Spike Timing

Information is carried by the time of firing

• Rate 

Information is carried by the intensity of neural Information is carried by the intensity of neural 
firing (estimated over an appropriate window)

This gives rise to two very different types of models:

Spike timing                Point process models

Rates                          Time series models



Science and Technology Enablers

• Neuroscience knowledge and paradigms – from 

neurons to cell assemblies to cognition

• Massive sensing ( microelectrode arrays and 

optogenetics)

• Biocompatibility

• Miniaturization of electrodes and electronic 

systems

• Signal Processing and Machine Learning

• Novel control frameworks for engineering design

Sanchez J., et al., “Technology and Signal Processing for BMIs”, IEEE SP Magazine, 
vol 25, #1, pp 29-40, 2008



Electrophysiology:

Electrode Arrays
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• 50μm polyimide insulated 

tungsten

• 250μm separation

• Wire impedance of 500K 

– 1.5M Ω
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Conventional BMIs!
DSP algorithm

Desired response

Neural Signal 
Processing

• During training the user actions create a desired response 
to the DSP algorithm. 

• During testing the DSP algorithm  creates an approximation 
to the desired response.

• The DSP algorithm is a simple mapper. i.e. design still 
follows the Master-Slave tool concept



BMI lessons learned
Current decoding methods use 

kinematic-training signals - not 
available in the paralyzed 
patients

I/O models cannot contend with new 
environments without retraining

Laboratory BMIs are NOT yet the 
design blue print for the clinical 
setting

BMIs should be more than a 
passive decoder – exploit user’s 
cognitive abilities 



Symbiotic Learning

• Intelligent behavior arises 
from the actions of an 
individual seeking to 
maximize received reward 
in a complex and changing 

Understand + model the Perception-Action-Reward Cycle (PARC)

in a complex and changing 
world.

• Why have rewards?
– Provide rules of the game
– Give incentive toward long-term 

over short-term gain
– Rewards are necessary but not 

sufficient…must learn through 
experience how to use them.

Sanchez J., et al. ,”Exploiting Co-Adaptation for the Design of Symbiotic 
Neuroprosthetic Assistants”, Neural Networks, vol. 22, pp. 305-315, 2009



X

Control Algorithm

Learning Algorithm

Neural Signal 
Processing

A Paradigm Shift for BMIs!

• The control algorithm learns through reinforcement to 
achieve common goals in the environment.

• Shared control with user to enhance learning in 
multiple scenarios and acquire the net benefits of 
behavioral, computational, and physiological strategies



Reward Learning Involves a Dialogue

• Relation between the agent and its 
environment.

• Environment: You are in state 14. 
You have 2 possible actions.

• Agent: I'll take action 2.
• Environment: You received a 

reinforcement of 17.8 units. You are 
now in state 13. You have 2 

AGENT

actions
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• Agent: I'll take action 1.
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Basic Reinforcement Learning 
Components
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Symbiotic BMI involves TWO intelligent 
agents in a cooperative dialogue!!!
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neuromodulation
sets the value 
function for the 

CA
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Both the CA and the 
user have the same 
reward in 3D space

DiGiovanna J., et al  “Co-adaptive Brain Machine Interface via Reinforcement Learning”, IEEE 
Trans. Biomed. Eng., vol 56,#1, 54-64., 2009



Features of Symbiotic BMI

• Brain activity is no longer related to movement 
• Enables intelligent system design in BMIs
• Both systems adapt in close loop in a very tight 

coupling between brain activity and computer 
agent (CA)agent (CA)

• User must incorporate the CA in its world 
model

• CA must decode brain activity for its value 
function  

• We are talking about a “symbiotic” biological-
computer system. 
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Experiment workspace [top view]

The user learns first to associate 
levers with water reward in a 
training phase. 

In brain control, it progressively, 
associates the blue guide LED of 
the robotic arm with the target 
lever LEDs. 
Only when the robot presses the 
target lever it will get reward. 



Experiment workspace [top view]



Experimental S-BMI Paradigm
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Agent – Value Function Estimation
This is the critical component of the S-BMI.
Used a 32x5x27 TDNN (with gamma memory) trained with the 

time difference (TD) error.
Each input is a neuron spike rate (100msec), each output is one 

of the 27 actions.  
Careful training is needed.
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DiGiovanna J., et al  “Co-adaptive Brain Machine Interface via Reinforcement Learning”, IEEE 
Trans. Biomed. Eng., vol 56,#1, 54-64., 2009



Proof of concept is established, 
BUT…

From an engineering perspective, the biggest bottleneck is the 
“channel” bandwidth between the brain and the prostheses: 
recent papers estimate it at  ~ 25 bits/minute (BCI)  ~180 
bits/minute (BMI), which is still very low. 

So the pertinent question is: how to increase the channel 
bandwidth?bandwidth?

Neuroscientists say: increase number of probed neurons

The engineering answer should also seek:
Architectures (how to use the available bits)
Signal Processing (reduce the noise in feature extraction) 



Future of Brain Assistants

• The processing architecture should be similar to the 
human brain such that it “learns how to learn” and 
predict what the patient wants.

• Therefore assistants have to also be aware of the 
environment for context, not only subject’s brain activity. 

• This requires sensory processing architectures for • This requires sensory processing architectures for 
vision, audition and haptics. 

• Bidirectional hierarchical distributed architectures that 
are able to learn from the input sensory data and low 
bandwidth coded user intent in a self-organizing 
manner. 

• We already initiated this development with a cognitive 
deep learning architecture for object recognition in video



Cognitive Model for Object Recognition in 

Video

Goal: develop a 

bidirectional, dynamical,  

adaptive, self -organizing, 

distributed and 

hierarchical model for hierarchical model for 

sensory cortex processing 

using approximate 

Bayesian inference.

Principe J. Chalasani R., “Cognitive Architecture for Sensory 
Processing”, Proc. of the IEEE, vol 102, #4, 514-525, 2014
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